Cameron–Liebler sets of k-spaces in $${{\mathrm{PG}}}(n,q)$$ PG ( n , q )

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blocking sets in PG ( 2 , q n ) from cones of PG ( 2 n , q )

Let and B̄ be a subset of = PG(2n − 1, q) and a subset of PG(2n, q) respectively, with ⊂ PG(2n, q) and B̄ ⊂ . Denote by K the cone of vertex and base B̄ and consider the point set B defined by B = (K\ ) ∪ {X ∈ S : X ∩ K = ∅}, in the André, Bruck-Bose representation of PG(2, qn) in PG(2n, q) associated to a regular spread S of PG(2n − 1, q). We are interested in finding conditions on B̄ and in order...

متن کامل

Linear Point Sets and Rédei Type k-blocking Sets in PG(n, q)

In this paper, k-blocking sets in PG(n, q), being of Rédei type, are investigated. A standard method to construct Rédei type k-blocking sets in PG(n, q) is to construct a cone having as base a Rédei type k′-blocking set in a subspace of PG(n, q). But also other Rédei type k-blocking sets in PG(n, q), which are not cones, exist. We give in this article a condition on the parameters of a Rédei ty...

متن کامل

Complete caps in projective spaces PG ( n , q )

A computer search in the finite projective spaces PG(n, q) for the spectrum of possible sizes k of complete k-caps is done. Randomized greedy algorithms are applied. New upper bounds on the smallest size of a complete cap are given for many values of n and q. Many new sizes of complete caps are obtained. Mathematics Subject Classification (2000): 51E21, 51E22, 94B05.

متن کامل

New Large (n, r)-arcs in PG(2, q)

An $(n, r)$-arc is a set of $n$ points of a projective plane such that some $r$, but no $r+1$ of them, are collinear. The maximum size of an $(n, r)$-arc in  $PG(2, q)$ is denoted by $m_r(2,q)$.  In this paper we present  a new $(184,12)$-arc in PG$(2,17),$  a new $(244,14)$-arc and a new $(267,15$)-arc in $PG(2,19).$

متن کامل

On Sizes of Complete Caps in Projective Spaces PG(n, q) and Arcs in Planes PG(2, q)

More than thirty new upper bounds on the smallest size t2(2, q) of a complete arc in the plane PG(2, q) are obtained for 169 ≤ q ≤ 839. New upper bounds on the smallest size t2(n, q) of the complete cap in the space PG(n, q) are given for n = 3 and 25 ≤ q ≤ 97, q odd; n = 4 and q = 7, 8, 11, 13, 17; n = 5 and q = 5, 7, 8, 9; n = 6 and q = 4, 8. The bounds are obtained by computer search for new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Designs, Codes and Cryptography

سال: 2018

ISSN: 0925-1022,1573-7586

DOI: 10.1007/s10623-018-0583-1